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1. INTRODUCTION

'ibis report describes the results our theoretical and observational research on dynamical

phenomena in sunspots under NASA Grant NSG-7562 during the entire grant period,

October 1978 through September 1990. The goal of this research was an understanding of

the various oscillatory, transient, and quasi-steady motions in sunspots and the basic

structure of a sunspot. The research involved both theoretical modeling (based on

magnetohydrodynamic theory) and observations of dynamical phenomena in sunspots. The

principal topics of the research were the following: (i) sunspot seismology, i.e., the

interaction of solar p-modes with a sunspot as a probe of the subsurface structure of a

sunspot; (ii) three-minute umbral oscillations and their relation to the structure of the umbral

atmosphere; (iii) siphon flows in isolated magnetic flux tubes and their relation to the

photospheric Evershed flow and to intense magnetic elements outside of sunspots; and (iv)

more general theoretical work on magneto-atmospheric waves.

The results of the research under this grant have all been reported in published

journal articles. Hence, this report consists only of a brief summary of these results along

with references to the appropriate articles. A complete bibliography of the publications

supported by this grant may be found at the end of this report. We should also note that our

research on these topics is continuing under a new NASA grant, NAGW-2123, which is

actually a continuation of NASA Grant NSG-7562 but was assigned a new number by

NASA.

2. SUNSPOT SEISMOLOGY

Perhaps the most important research to arise from this NASA grant is that on "sunspot

seismology," the use of five-minute oscillations in and around a sunspot as a probe of the

subsurface structure of a sunspot. There are two types of oscillations in sunspot umbrae:

three-minute oscillations, which have been identified as resonant modes of the sunspot

itself (see section 3 of this proposal), and five-minute oscillations, which represent the

response of the sunspot to forcing by the p-mode oscillations in the surrounding convection

zone (Thomas 1981). Thomas, Cram, and Nye (1982) first showed how the five-minute

oscillations in a sunspot might be used as a probe of the subsurface structure of the sunspot

magnetic field.

Abdelatif, Lites, and Thomas (1984, 1986) made detailed observations of five-minute

oscillations in a sunspot and its surroundings. They showed that the sunspot acts as a

selective filter in transmitting certain frequencies in the power spectrum of the five-minute

p-mode oscillations in the surrounding convection zone. They also showed that oscillatory

power is shifted to longer wavelengths in the umbra. Both of these effects are exhibited by
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simple theoreticalmodels in which the sunspotismodeled as a magnetic slab(Abdclatif

19_5) or magnetic cylinder(Abdclatifand Thomas 1987).The horizontalwavelength of an

acousticwave isincreasedas itistransmittedintothe magnetic regioninthe form of a fast

magneto-acoustic wave, causing a shiftof oscillatorypower to longer horizontal

wavelength (lower horizontalwavcnumber), asobserved. The transmissioncocff'icicntfor

waves enteringthe model sunspotumbra variesup and down with wavelength because of

the phcnon_non ofresonant transmission;thisexplainstheobserved selectivefilteringof

thep-modes by the sunspot.

Abdclatifand Thomas (1987)modeled the sunspotas a single,monolithicmagnetic flux

tube,which isthe conventionalmodel. In relatedwork, Bogdan (1987; scc alsoBogdan

and Zwcibel 1987) studiedtheinteractionof acousticwaves with a sunspot consistingof a

clusterof individual,isolatedmagnetic flux tubes,a model firstproposed by Parkcr

(1979). These two complementary theoreticalapproaches,coupled with observationsand

the methods of sunspot seismology,promise to determine which (ifeither)of these two

theoreticalmodels of subsurfacesunspotstructureiscorrect.

Observations by Braun, Duvall, and LaBontc (1987, 1988) have shown thata sunspot

absorbs an appreciablefractionof the energy of incidentp-modes, or perhaps scattersthe

energy intounresolvedmodes of high horizontalwavcnumber. The physicalmechanism for

this apparent absorption of energy is not wcU understood, although several possiblc

mechanisms have bccn proposed.

Our more recent observationalresearch on sunspot seismology has bccn done in

collaborationwith Bruce Litcs,Tim Brown, and Tom Bogdan of the High Altitudc

Observatory.Our approach has been tomeasure the oscillatoryvelocityfieldin an isolated

sunspot and in a surrounding region of substantialsize. In order to probe subsurfacc

structureover a range of depths,wc observe theoscillatoryvelocityfieldover a wide range

of horizontalwavcnumbcrs. For thispurpose, wc carriedout two complementary and

simultaneous observationalprograms using two differentinstruments:high-wavcnumber

(or, high spatial resolution) measurements with the vacuum tower telescope at

NSO/Sunspot, and low-wavcnumber mcasurcrn_ntswith theHAO/NSO Fouriertachometer

atTucson. These observationsarc directedatprobing the structureof a singlesunspot at

differentdepths in the convection zone through measurements of high and medium

wavcnumbcr p-modes insideand outside the sunspot. The resultsshould allow us to

distinguishbetween models of the sunspotbased upon a single,largemagnetic fluxtubeor

a clusterof smallerindividualfluxtubes,and tomeasure theoveralldiameter of the sunspot

magnetic fieldas a functionof depth. Wc obtained fivegood data setsof four to seven

hours duration on three differentsunspots during the period 14-23 March 1989, plus a
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control run on quiet sun at disk center. Reduction of the best of these data sets has produced

a time series of velocity maps that is as free of instrumental artifacts as possible. With

support from the continuation grant (NAGW-2123), we are currently analyzing the

absorption of p-modes by the observed sunspot Preliminary results show that we are able

to measure this absorption as a function of frequency and wavenumber with much better

resolution than has been achieved previously. These new results, together with the advances

in the theoretical interpretation of the absorption mechanism that have been made recently,

suggest that some of the goals of sunspot seismology will be achieved soon.

3. THREE-MINUTE UMBRAL OSCILLATIONS

A major part of the research effort under this NASA grant over the years was devoted to

theoretical and observational studies of the characteristic three-minute umbral oscillations in

sunspots. A detailed theory was developed (Scheuer and Thomas 1981; Thomas and

Scheuer 1982) in which the three-minute umbral oscillations are identified as a resonant

mode of fast magneto-atmospheric wave that is nearly trapped in the umbra/photosphere

and subphotosphere. Although most of the wave energy is trapped in the photosphere and

subphotosphere, some of the energy escapes in the form of acoustic waves propagating

upward along nearly vertical magnetic field lines. These acoustic waves can produce an

additional resonance in the chromosphere (Zhugzhda, Ix)cans, and Staude 1983; Gurman

and Leibacher 1984). These later authors suggested that the chromospheric resonance alone,

excited by acoustic noise from the convection zone, is responsible for the three-minute

umbral oscillations. However, our subsequent observations detected the three-minute

umbral oscillations at photospheric heights, where the kinetic energy density of the

oscillations is at least five times greater than in the chromosphere (Thomas, Cram, and Nye

1984; Abdelatif, Lites, and Thomas 1984, 1986; Lites and Thomas 1985). Furthermore,

the results of Lites and Thomas (1985) show that the three-minute umbral oscillation is a

coherent vertically standing wave in the photosphere. These results confirm the presence of

the photospheric resonance in sunspot umbrae. A summary of the observational evidence

(Thomas 1984b, 1985a; Lites 1984, 1986) indicates that the photospheric resonance is the

fundamental source of the three-minute umbral oscillations, but that additional higher-

frequency peaks usually observed in the power spectra of chromospheric velocity are

produced by the chromospheric resonance.

The photospheric resonance may possibly be excited internally by overstable convection

in the umbral subphotosphere (Moore 1973; Mullan and Yun 1973). Alternatively, Moore

and Rabin (1984) have suggested that the three-minute umbral oscillations are excited by

high-frequency components of the solar p-modes outside the sunspot. Some observational
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evidence argues against external excitation by the p-modes and favors internal excitation

(Lites and Thomas 1985; Lites 1986), but this evidence is not conclusive. Further work on

identifying the excitation mechanism of the three-minute umbral oscillations is needed.

We made simultaneous observations of umbral oscillations with the UVSP instrument

on the SMM satellite and with the tower tolescope, e,cheUe spectrograph, and multi-diode

array at NSO/Sunspot (Thomas, Lites, Gurman, and Ladd 1987). With the UVSP we

measured the oscillations in the transition region line C IV 1548 and from the ground we

measured the oscillations in He I 10830 (upper chromosphere), Ca II K (chromosphere),

and Fe 13969 (photosphere). This gave us a simultaneous measure of the oscillations over

a great range of height in the umbral atmosphere and allows us to study the vertical structure

and propagation properties of the oscillations in more detail than has been done before. The

power spectra of velocity and intensity variations have multiple peaks in the three-minute

band (4.5-10 mHz). A strong oscillation at 5.5 mHz is coherent between the chromosphere

and transition region. Another strong osciUation at 7.5 mHz is coherent between the

photosphere and transition region and appears to have a node in the chromosphere. The rms

velocity in the three-minute band is a tittle over 1 km s-1 in both the chromosphere and

transition region, but the kinetic energy density is much lower in the transition region (by a

factor of ten or more) because of the lower mass density there. This indicates a strong

downward reflection of the waves in the transition region.

Our simultaneous measurements of the oscillation amplitude in the chromosphere and

transition region provide an independent dynamical test of models of a sunspot atmosphere.

At these heights the plasma beta is small and the waves are essentially pure acoustic waves

along the predominantly vertical magnetic field Lines. For a given atmospheric model, one

can calculate the ratio of wave amplitudes at the heights of formation of the chromospheric

and transition-region spectral lines and compare the calculated ratio with the observed ratio.

This comparison can be extended to include more spectral lines and can be used to fix the

value of one or more parameters in a model sunspot atmosphere, such as the steepness of

the temperature gradient in the transition region.

In one of our earlier observational papers (Thomas, Cram and Nye 1984) we

reported the discovery of light bridge flashes, which are sporadic, strong brightenings and

broadenings of the Ca 1I K line. The K line emission profile during a light bridge flash is

broader, more intense, and more symme_c than the profile during a normal umbral flash.

4. EVERSHED FLOW AND PENUMBRAL STRUCTURE

Substantial progress was made in our the study of the phenomenon of siphon flows in

isolated magnetic flux tubes, which is related to the photospheric Evershed flow and the
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f'flamentary structure of the penumbra as well as to the structure of intense flux tubes in the

quiet photosphere. This work is described in a series of papers (Thomas 1984a, 1988,

1989; Montesinos and Thomas 1989; Thomas and Montcsinos 1990a,b,1991).

Previous studies of siphon flows were limited to the case of a low-J3 plasma, appropriate

for an embedded flux tube in the solar corona (Meyer and Schmidt 1968; see also the review

by Priest 1981). We considered steady siphon flows in isolated, thin magnetic flux tubes

surrounded by field-free gas, with plasma 13of order unity, appropriate for conditions in the

solar photosphere. In this case the cross-sectional area and magnetic field strength of the

flux tube vary along the tube in response to pressure changes induced by the flow. The

critical speezi for siphon flows in an isolated flux tube turns out to be the tube speed ct =

[c2a2(c2+a2)] 1/2 where c is the internal sound speed and a is the Alfv_n speed, instead of

the sound speed,which isthe criticalspeed foran embedded fluxtube in the low-_ limit.

Flows with speedslessthanct(subcdticalflows)or greaterthan ct(supercriticalflows) are

analogous to subsonicand supersonicflows in an embedded fluxtube.

Wc calculatedsteadyisothermalsiphonflows inarched,isolatedmagnetic fluxtubesina

stratifiedatmosphere (Thomas 1988). The BernouUi effectof the flow rcduccs the cross-

sectionalarea and increasesthe magnetic fieldstrengthof the tube compared to a static

arched tube of the same height. Thus, the siphon slows offera mechanism forproducing

concentratedmagnetic fluxin the solarphotosphere. Under awide range of conditions,the

Bernoullieffectisstrongenough to cause a decrease in cross-sectionalarea with height

above a certain point in the rising part of the arch, producing a bulge point or point of local

maximum cross-sectional area. In a critical flow, the velocity increases to the tube speed at

the top of the arch and continues to increase to supercritical speed in the descending part of

the arch down to a point where the flow decelerates abruptly to subcritical speed through a

standing "tube shock." A critical flow is "choked" in the sense that the mass flow rate is

the same for all allowable values of the backpressure at the downstream foorpoint. In

addition to critical flows, there are purely subcritical and purely supercritical flows which do

not require tube shocks.

In collaboration with Benjamin Montesinos (Department of Theoretical Physics,

University of Oxford), our study of siphon flows in isolated magnetic flux tubes was

extended to the case of adiabatic flow and the results were compared with the isothermal

flows (Montesinos and Thomas 1989). The results for these two limiting cases of the

energy equation provide insight into the behavior of flows with a more complicated energy

equation coupled with radiative transfer. In general, the isothermal and adiabatic flows are

qualitatively similar, although the conditions for critical flow are quantitatively different (and

we have explored these conditions thoroughly). However, if in the adiabatic case we make
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temperature,thenqualitativelydifferentflows can occur. In a cold mbc thecross-sectional

area can actuallydecrease with heightnear the upstream footpoint,while in a hot tube the

velocitycan actuallydecreasewith heightnear theupstream footpoint.

Wc have calculatedtheequilibriumpathof an arched,isolated,thinfluxmbc containinga

siphonflow (Thomas and Montesinos 1990a).The large-scalemechanical equilibriumof the

fluxtube involvesa balance among thebuoyancy force,thenet magnetic tensionforceduc

to the curvatureof the flux-tubeaxis,and the inertial(centrifugal)forceduc to the siphon

flow along curved streamlines.The presence of a siphon flow causes the fluxtube arch to

bend more sharply,so thatmagnetic tensioncan overcome the straightcningeffectof the

inertialforce,and reduces themaximum width of thearch compar_ tothc maximum width

of a staticarch (firstdetermined by Parker 1975).

In furtherwork (Thomas and Montcsinos 1991) we computed critical,or "choked,"

siphon flows including the standing tube shocks in the downstream part of the tube.

Determining the detailedstructureof the standingtube shock isa complicated problem that

cannot bc treatedwithinthe thinfluxtube approximation. However, one can include the

tube shock inthe siphonflow by assuming itto bc relativelythinand then applying theone-

dimensional jump conditionsderivedwithinthe thinfluxtube approximation. These jump

conditions have bccn dcrivcd by Hcrbold etal. (1985) and by Fcrriz-Mas and Moreno-

Inscrtis(1987). We developed a techniquefor computing the strengthand positionof the

standing tube shock in adiabaticcriticalsiphon flows for all allowable values of thc

backpressureatthe downstream footpoint.Wc alsoextended our calculationsto includea

more realisticexternal atrnosphcre(Thomas and Montesinos 1991). Currently wc arc

extending these calculationsto include radiativetransferbetween the flux tube and the

surroundingannosphcrc.

Meyer and Schmidt (1968) fn'stsuggested thatthe Evershed flow isa siphon flow

along magnetic fluxtubes.Their analysisand otheranalysesbased on an embedded flux

tube in the low-[3limitarc not appropriateforphotosphericlevels,however, whereas our

analysisof flows in isolatedflux tubes is. Wc have considered the possibilitythatthe

photosphericEvershcd flow isa siphon flow along thedark penumbral filaments(Thomas

1988; Montcsinos and Thomas 1989). Using the penumbral model of Nye and Thomas

(1974), we found good agreement between observed flow speeds and the predicted

maximum flow spce,,d(thembc speed)intherisingpartof the arched fluxtube.The siphon

flow alsoprovidesa mechanism forconcentratingthemagnetic fluxand keeping itthin.We

arc now extending our model to include the effectof an ambient magnetic fieldin the
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atmosphere outsidethe fluxtube,which givesa more realisticmodel of the situationin the

penumbral photosphere.

There isa theoreticaldifficultyin identifyingthe photospheric Evershed flow with

siphon flows along the dark filaments,however, as pointed out by Cram, Nye, and

Thomas (198I). From thepointof view of radiativetransfer,itisdifficulttoreconcilethe

darkness of the filamentwith the factthatthe gas densityinsidean isolatedmagnetic flux

tube must in generalbe lower thanthe surroundings(magneticbuoyancy). More realistic

computations of penumbral siphon flows with an ambient externalmagnetic fieldand

realisticradiativetransfermay well resolvethisdifficulty.Wc arc currentlydoing these

calculations.

In an observationalpaper (Nyc, Thomas, and Cram 198,i)we reportedmeasurements of

downdrafts within moving magnetic features which move outward across the moat

surroundinga largesunspot. This discoveryhas recentlybccn conf'Lrmedby Lites(,private

communication), who has alsomade theinterestingsuggestionthatthesedowndrafts could

be the continuationof thephotosphericEvershed flow outsideof the sunspot.This ideafits

in very wcU with a siphon-flow model of the Evershed flow in which the downstream

footpointof the flux-tubearchisthemoving magnetic featureoutsidethe penumbra.

Siphon flows in isolatedmagnetic flux tubes also offer a possible mechanism for

creatingsome of the intensemagnetic elements observed in the quietsolarphotosphere.

Wc have discussedthisapplicationin two papers (Thomas 1989; Thomas and Montcsinos

1990b).

5.MAGNETO-ATMOSPHERIC WAVES

Theoreticalwork on oscillationsin sunspots generallyinvolves the study of magneto-

atmospheric waves (or magneto-acoustic-gravitywaves), which are waves in a stratified,

compressible,electricallyconducting atmosphere under gravity,permeated by a magnetic

field. These waves arc supported by a combination of the restoring forces duc to

compression, buoyancy, and distortionof the magnetic field. Our research under this

NASA granthas ledtoa bettergeneralunderstandingof magneto-atmospheric waves.

We have shown the limitationsof the localdispersionrelationformagncto-atrnospheric

waves and proposed a new, self-consistentform for thisrelation(Thomas 1982). We

calculatedthe asymptotic far-fieldsolutionformagneto-atmospheric waves generated by a

spatiallyconcentratedtime-harmonic source (Adam and Thomas 1984). We summarized

our knowledge of magneto-atmospheric waves in two review articles(Thomas 1983,

1985b); the second of these reviews covers waves in structuredmagnctic fieldsand

magnetic fluxtubes.
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In our analysisof theoreticalmodels of the interactionof p-modes with a sunspot

(Abdelatifand Thomas 1987),we found itnecessaryto solvethe problem of thereflection

and transmission of compressive waves across a nonmagnetic-magnetic interface.

Previously thisproblem had been solved only for a very specialcase (Cram and Wilson

1975). An acousticwave incidentupon the interfacecan excitea fastmagneto-acoustic

wave, a slow magneto-acoustic wave, or an evanescent wave in the magnetic region,

depending on thedirectionof incidenceand on thevaluesof two paran_ters:the ratioofthe

sound speeds in thetwo regionsand theratioof the Alfvdn speed to the sound _ccd in the

magnetic region. We solvedthe lincarizedproblem incomplete generality(Abdelatifand

Thomas 1989).The resultshave wide applicationin solarphysics and more gencraUy in

astrophysics.

Our expertiseinmagneto-atmospheric waves was alsoappliedina collaborativestudyof

nonradialoscillationmodes of a magnetic neutronstar(Carrolletal.1986).
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